There’s a biblical ark that rode out the Flood, and it was no bathtub. Noah built it somehow, with or without some mysterious ancient technology or extreme gopherwood. Does this mean God had to suspend the laws of physics to keep Noah afloat?
Let’s say He didn’t. In that case, could Noah get through the whole ark operation?
Constructing an ark of biblical proportions would take time, resources, and know-how.
Time: Noah had plenty of time — 120 years in fact. In Genesis 6:3, the Lord said, “My Spirit shall not strive with man forever, for he is indeed flesh; yet his days shall be one hundred and twenty years.” Some take this as God setting the human lifespan to 120 years. There’s a problem with that: every patriarch from Noah to Amram broke God’s new “ruling.” Noah made it to 950 years of age, his son Shem was 600, and even Abraham died “full of years” at 175.
It’s not about lifespans, but about God giving Noah 120 years warning of the Deluge. That’s a long time to build a boat—too long, in fact. At that pace, Noah would still be chipping away at the stern while the bow had been exposed to the weather for a century. It makes more sense that Noah spent a lot of this time in preparation until, with everything prepared, he organized a serious barn-raising.
This is where the pitch comes in. The pitch for Noah’s ark was probably not bitumen but the gum-based resins extracted from certain trees (such as pitch pine). Wooden ships were routinely waterproofed in this way. The difference here is that God directed Noah to apply the icky goo inside as well as out. That’s a lot of pitch, so no doubt God had a good reason. Here are two: pitch stabilizes the moisture content of the wood and acts as a preservative. This is ideal for a larger-than-average wooden ship that takes a decade or more to assemble, not just the typical year or so.
Resources: Did Noah need help? A pit-sawing team (of two) would take many decades to cut the wood for one ark. That’s cutting it close. Noah and sons had other things to focus on, so it makes sense that labor was hired, or that processed materials like sawn lumber were purchased. Noah should have been extremely wealthy having lived 480 years before the project even began. He probably had the help of his grandfather Methuselah,1 who lived to see the ark constructed.
His world had abundant resources (particularly timber and food), and bronze and steel technology had been around for generations ever since Tubal-Cain first got into working bronze and iron (Genesis 4:22). With such long life spans, technology could rapidly increase in the 1,656 years from Adam to the Flood.
But let’s not get too carried away. There are limits to the technology of the pre-Flood world. The ark was made of wood, not metal, which is better for ship hulls. There were also no other survivors in ships (or space-stations for that matter!). The civilizations immediately after the Babel dispersion give us some clues. They excelled at building big things in difficult materials but were not industrialized in the modern sense. An appropriate estimate for the level of technology in Noah’s day might be something on par with ancient Egyptians, Greeks, Romans, Chinese, etc. The Egyptians could drill and cut granite; the Greeks could build huge ships with furniture-like precision. These were very ingenious, accomplished builders, experts in crafting metals, ceramics, and other materials — but without the industrialized manufacturing made possible with electricity and heat engines (i.e., steam or combustion engines) implying high-precision machine tools.
We will treat such industrialization as missing from the pre-Flood world as we describe the following construction materials and techniques.
Permitted materials and hardware: (Technology of ancient civilizations) Wood: Accurately sawn to fixed sectional dimensions. An up/down saw driven by flowing water or animal draft power, for instance. Sawing is a key technology. Metals: bronze and iron (cast and/or hand forged). Ceramics: fired and glazed pots, oil lamps, stoneware, small glass panes. Other: leather, bone, animal, and resin glues. Fasteners: wooden pegs, metal rods, spikes, and straps. Basic processing/cooking/distilling of pitch/glues. Hand tools in bronze and iron: Drilling auger or spade bit, hand saws, axes, chisels. Measurement: basic surveying, water levels. Lifting and carrying devices: cranes, winches, wheels, rollers, rope, and pulleys. Special long lead-time methods: Planting and harvesting old-growth trees, training trees into shapes (arborsculpture), breeding and training of animals.
Excluded materials and hardware: (Technology after the Industrial Revolution) Electrical power machines, heat engines (steam or internal combustion), threaded bolts and screws, rolled steel plate, metallic films and sheet, processed polymers, highly oxidizing metals like aluminum and titanium, stainless steel, electronics, advanced chemical processing, engineered wood products such as finger jointed and glulam beams, bulk dressed lumber (planed), plate glass (laminated or tempered), steel rope and drawn steel wire, advanced adhesives like epoxy.
Know-how: There are many examples in Scripture where God called people to tackle things outside their expertise, so Noah may not have had much experience in shipbuilding. This is rather unlikely at age 480, but on a 120-year project he could afford to do decades of research.
Having lived for around five centuries, Noah may have been perfectly capable of designing the ark all on his own. The ark is briefly specified in only three verses (Genesis 6:14–16), even lacking crucial data such as the number of animals or amount of food. Perhaps Noah was given more detail, just like Moses received the tabernacle instructions that included exact dimensions and even the number of curtain rings. There’s a hint given in Genesis 6:22: “Noah did everything just as God commanded him” (NIV), which strongly parallels Exodus 39:32: “The Israelites did everything just as the Lord commanded Moses” (NIV). Perhaps this “everything” was more than three verses we have recorded for our benefit, or maybe this is all he had to go on.
Either way, Noah had to get it right the first time — there were no second chances. As far as miracles are concerned, there is one “miracle” recorded; God gave instructions, however brief.
The launch of the ark was not meant to be an extreme sport. Noah needed a safe way to launch during earthquakes and strong currents.
The Flood started suddenly when “on that day, all the fountains of the great deep were broken up, and the windows of heaven were opened” (Genesis 7:11). Any flood that rapidly inundates the world (in 40 days or less) will involve massive high-speed currents that would dwarf any modern tsunami. In fact, no modern flood lays down sediments anything like the huge, fossil-filled rock layers deposited all over the world. Such a sudden inundation would pulverize everything in its path, including all shipping and coastal settlements.
How could the ark survive? One solution is to launch from the highest point. This keeps Noah out of the violence of the initial inflows of ocean water as predicted by the Catastrophic Plate Tectonics model.2 The Flood went on to drown every mountain in the pre-Flood world (Genesis 7:19). Since modern oceans contain enough water to drown the planet to a depth of about 1.8 miles (2.85 km),3 the pre-Flood terrain was probably limited to within this elevation.4 By the time the water reached the ark, the currents would have slowed to manageable levels before the launch.
Noah, whether by acumen or divine guidance, may have selected an elevated site where temperate conditions could support a pine forest. Pine, a possible candidate for the mysterious “gopherwood,” is especially suited to both shipbuilding and pitch production. This original location is unknown to us today because “the ark moved about” (Genesis 7:18) before finally coming to rest in the Middle East. Gopherwood doesn’t have to be a desert acacia, or even a cedar of Lebanon. The very fact that gopherwood is never mentioned again suggests the wood had vanished too. It may have been alive and well on the other side of the world, be it Douglas fir, yellow pine, or even teak.
Here is a quick rundown of a possible construction plan.
Noah clear-cuts the hilltop expanse. A foundation is prepared with massive stone walls running transversely to support the hull. Large stones give resistance to strong currents, and tapered ends avoid snagging. Besides all that, don’t ancient people always seem to baffle us with their stonework — oversized and outrageously precise? Those ancient civilizations were not a great many generations after Noah himself (Genesis 10).
The three keels laid on the foundation walls help to:
These massive keels are built up by laying beams and pinning them together (edge bolted). The lower members within the keels are not scarfed in order to manage stresses.5
Ships are normally launched on a slipway, but in Noah’s case “the waters increased and lifted up the ark” (Genesis 7:17). Extra safeguards would be prudent, such as releasable mooring ropes to keep the ark from moving away until properly buoyed. There should be no solid obstacles higher than the skid platform — including tree stumps.
Once afloat, the depth of the water would average almost two miles (three km),6 shielding the ark from tectonic activity. Deep water is safe in a tsunami.7 The ark had to survive the ocean surface, not the massive sediment flows at the seabed.
But the surface was no picnic either. Later in the voyage, God sent a wind (Genesis 8:1), and wind creates waves, so rough seas are at least part of the five month voyage. Since the proportions of the ark (Genesis 6:15) are ideal8 for an ocean-going vessel, it was obviously meant to behave like a ship. With such proportions, the necessary stability and sea kindliness can be achieved even for extreme seas,9 by a suitable coordination of hull shape and load distribution.
But is it even possible for a wooden vessel as large as Noah’s ark to survive the stresses at sea?
The largest wooden ships in recent history (1800s and early 1900s) tended to flex in rough seas, making them prone to leakage. These ships were carvel-built, a plank-on-frame construction method that lacks inherent resistance to racking.10 The stiffness of the hull depended almost entirely on the tightness of caulking between planks.
Carvel11 planking dominated wooden shipbuilding in the last few centuries. The method was simple and quick, but a new ship did not stay a “tight ship” for very long. Even fitting two pins in each plank gave little improvement.12 Larger ships were subject to higher forces, accelerating the loosening of the caulked planks. This led to reinforcement with iron straps.
These diagonal straps certainly helped improve a bad design and gave the single layer of carvel planking some much-needed shear resistance. But the steel straps were pinned (bolted) to softer wooden frames, a considerable stress concentration, especially at the ends of the straps.
This led to the next patch-up — steel plates at the top and bottom to secure the diagonal bracing. That kept the hull sides intact, but now the problem was transmitted to extremities, like the top deck.13
Later, during World War I, steel was scarce and wooden supply ships14 were being built in a hurry. Naval architects revisiting the carvel hull-bending problem made big increases to keelson depth15 and upper deck reinforcement (using clamp and shelf strakes).16 One design aimed to “produce a boat which will have strength equivalent to that of a steel hull without using excessive amounts of timber.”17 It had a double layer of diagonal planking under the standard planks. That is not a carvel hull; it is cold-molded just like the wooden minesweepers built in the 1990s.18
So the shortcomings of a carvel hull are not easily corrected.19 A better way is to use a planking system with inherent shear strength, akin to a house frame braced with plywood instead of clapboards (lap siding or weatherboards).
The claim that Noah’s ark is an impossible size for a wooden ship is based on the apparent limiting size of documented wooden ships of the 1800–1900s; around 330 feet (100 m) even with iron bracing. In comparison, using one of the most reliable ancient cubits, the Royal Egyptian Cubit at 20.6 inches (0.523 m), Noah’s ark would be 515 feet long, 86 feet wide, and 51.5 feet high (157 m x 26 m x 15.7 m).
That makes it about 50 percent longer than the longest wooden ships in modern records.
Is this proof positive that the laws of physics must be suspended to keep Noah afloat? This assumes that Noah’s ark is built like a carvel hull, or worse. Wood may be an ancient building material, but it still has a competitive strength-to-weight ratio, even compared to metals. For large structures like buildings, bridges, and ships, the problem is not the strength properties of the wood itself, but the manner of joining.20
Using the strength properties of wood, calculations can determine the required thickness for a vessel the size of Noah’s ark operating in extreme seas. Naval architects at the world-class ship research center KRISO (renamed MOERI in 2005) in Korea, studied Noah’s ark in 1992 and declared the biblical specifications sound. They used a planking layer 12 inches (0.3 m) thick, taken as a shear resistant “plate structure.” Internal structural framework comprised of beams 20 inches (0.5 m) square.
This structure was assessed to determine the stresses on the hull under increasingly severe ocean conditions, with irregular (random) waves up to 30 meters (98 feet).
There are several ways to create this integrated “plate structure.” Carvel is not one of them:
The Hong study (see footnote 8) also included frames and beam members (50 cm x 50 cm) in their structural analysis. These beams need to be joined together somehow, a critical detail especially in joints that could undergo completely reversed loading. Due to the wave loadings and accelerations at sea, joints that normally sustain compression forces can also go into tension. These joints are the most difficult to achieve in wood, but the full tensile strength of a 0.5 m square beam is an unlikely requirement. Joints must be designed to handle various combinations of compression, tension, twisting (torsion), and possibly bending.
There are a number of structural options for joining large beams. All are held together by metal rods (called bolts) driven into pre-drilled holes, or spikes (large nails). Metal fasteners are also found in large ancient ships.
Each of these framing joints has its own merits and is suitable for different tasks, so several of these methods can be found on any one ship.38
The familiar mortise and tenon framing joint is conspicuously absent in primary ship structures. It is too weak, especially in tension.
Another problem for these “oversized” carvel ships was weak frames39 or “ribs.” The curved frame profiles were built up of many short segments bolted together, but this made them flex and go out of shape. Modern wooden frames are laminated, but the best fix is to use bulkheads — lateral shear walls at regular intervals along the hull. The Chinese were doing that at least 12 centuries40 before Benjamin Franklin suggested it in 1787.
Extensive use of internal walls actually suits the ark. It was never meant to have a cavernous interior; in fact, quite the opposite. Noah was directed to build “nests” for the animals, not cattle yards. Private enclosures are appropriate for the transport and care of live animals as it helps to keep them calm. From a structural viewpoint, this could mean plenty of bulkhead structures (walls) in both transverse and longitudinal directions. This all adds to the structural integrity of the hull.
While 330 feet (100 m) may well be the practical limit for a carvel-built hull with a single layer of planking, more appropriate construction methods would extend that boundary by at least 50 percent.
As for the compulsory miracles: God gave instructions to Noah, He brought the animals, He closed the door, and He even sent a wind. But was supernatural intervention the only thing holding Noah’s ark together?
Not necessarily. Maybe Noah used ancient bulkheads and ancient planking to build a ship that was more than able to withstand the stresses it faced during the Flood.
Building on the previous New Answers Books, learn more about the Gospel and a young earth, death of plants and leaves, dragons, religious wars, cavemen, science, living fossils, and more.
Read Online Buy BookAnswers in Genesis is an apologetics ministry, dedicated to helping Christians defend their faith and proclaim the good news of Jesus Christ.